ISSN: XXXX-XXXX

The Impact of Artificial Intelligence on Medical Sciences and Its Future Potential

Abstract

AI is revolutionizing the field of medical sciences, changing the face of healthcare and advancing medical research. With machine learning-powered diagnostic tools, predictive analytics, and personalized medicine, AI has improved the precision, efficiency, and accessibility of healthcare services. It allows for the early detection of diseases, simplifies administrative processes, and supports drug development. AI-driven technologies, such as robotic surgery and virtual health assistants, are revolutionizing the care of patients. The paper discusses the current applications of AI in medical sciences, the challenges it faces, and its promising potential for the future, highlighting its pivotal role in shaping a smarter, more efficient healthcare system.

References

  1. 1) Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838.
  2. 2) Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12(7), 878.
  3. 3) Avsec, Ž., Kreuzhuber, R., Israeli, J., Xu, N., Cheng, J., & Gagneur, J. (2021). Effective gene expression prediction from sequence by integrating long-range interactions. Nature Methods, 18(10), 1196–1205.
  4. 4) Kumar N (2024) “Health Care DNS Tunnelling Detection Method via Spiking Neural Network” Lecture Notes in Electrical Engineering, Springer Nature, pp715-725. DOI: 10.1007/978-981-99-8646-0_56
  5. 5) Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: New computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389–403.
  6. 6) Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
  7. 7) Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., & Wu, D. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.
  8. 8) Jumper, J., Evans, R., Pritzel, A., Green, T., & Figurnov, M. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.
  9. 9) LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
  10. 10) Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in Bioinformatics, 18(5), 851–869.
  11. 11) Poplin, R., Chang, P. C., Alexander, D., Schwartz, S., Colthurst, T., & Gross, S. S. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983–987.
  12. 12) Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In Proceedings of the 34th International Conference on Machine Learning (pp. 3145–3153).
  13. 13) Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21(2), 110–124.
  14. 14) Zeng, H., Edwards, M. D., Liu, G., & Gifford, D. K. (2016). Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics, 32(12), i121–i127.
  15. 15) Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 12(10), 931–934.
Download PDF

How to Cite

Rachna Sharma, (2025-02-02 22:32:34.017). The Impact of Artificial Intelligence on Medical Sciences and Its Future Potential. Abhi International Journal of Artificial Intelligence Applications in Medical Science, Volume OAi2Xs7F6qlpyOvw7DXK, Issue 1.